Worksheet, Discussion \#34; Thursday, 8/2/2018
Instructor name: Roy Zhao

## 1 Eigenvalues and Eigenvectors

### 1.1 Concepts

1. An eigenvalue eigenvector pair for a square matrix $A$ is a scalar $\lambda$ and nonzero vector $\vec{v}$ such that $A \vec{v}=\lambda \vec{v}$. To find this, we write $\lambda \vec{v}=\lambda I \vec{v}$ and bring this to the other side to get $(A-\lambda I) \vec{v}=0$. Since $\vec{v}$ is nonzero, this means that $(A-\lambda I) \vec{w}=0$ has at least two solutions (since the trivial solution is a solution), and hence there must be an infinite number of solutions and $\operatorname{det}(A-\lambda I)=0$.
So to find the eigenvalues, we solve $\operatorname{det}(A-\lambda I)=0$. For a particular eigenvalue, to find the associated eigenvector, we have to use Gaussian elimination on $A-\lambda I$ to get the general solution.

### 1.2 Problems

2. True False Associated to every eigenvalue is an eigenvector and vice versa
3. True False If 2 is an eigenvalue for $A$, then 4 is an eigenvalue for $A^{2}$.
4. True False If $\operatorname{det}(A)=0$, then 0 has to be an eigenvalue of $A$.
5. True False If 2 is an eigenvalue of $A$ and 3 is an eigenvalue of $B$, then $2 \cdot 3=6$ is an eigenvalue of $A B$.
6. True False For each eigenvalue, there is only one choice of eigenvector.
7. Find the eigenvalue and associated eigenvectors of $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right)$.
8. Find the eigenvalues and eigenvectors of $\left(\begin{array}{cc}1 & 3 \\ 9 & -5\end{array}\right)$.
9. Find the eigenvalues of $\left(\begin{array}{ccc}2 & 4 & 4 \\ -1 & 0 & -1 \\ 1 & 0 & 1\end{array}\right)$.

## 2 Linear Systems of Differential Equations

### 2.1 Concepts

10. In order to solve a system of linear differential equations, we represent it in the form $\vec{y}=A \vec{y}$. Then we find the eigenvalues of $A$, say $\lambda_{1}, \lambda_{2}$. If $\lambda_{1} \neq \lambda_{2}$ are real, then we find the eigenvectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$ and the general solution is of the form $\vec{y}=c_{1} e^{\lambda_{1} t} \overrightarrow{v_{1}}+c_{2} e^{\lambda-2 t} \overrightarrow{v_{2}}$.

### 2.2 Problems

11. True False If two matrices $A, B$ have the same eigenvalues, then they have the same solutions to $\vec{y}^{\prime}=A \vec{y}$.
12. Find the general solution to the systems of linear differential equations

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=y_{1}(t)+4 y_{2}(t) \\
y_{2}^{\prime}(t)=3 y_{2}(t)
\end{array}\right.
$$

13. Find the solution to the systems of linear differential equations

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=5 y_{1}(t)-4 y_{2}(t) \\
y_{2}^{\prime}(t)=4 y_{1}(t)-5 y_{2}(t)
\end{array}\right.
$$

with $\vec{y}(0)=\binom{3}{3}$.
14. Verify that $\vec{x}(t)=\left(\begin{array}{c}0 \\ -e^{t} \\ e^{t}\end{array}\right), \vec{y}(t)=\left(\begin{array}{c}e^{2 t} \\ -2 e^{2 t} \\ 0\end{array}\right), \vec{z}(t)=\left(\begin{array}{c}0 \\ e^{3 t} \\ e^{3 t}\end{array}\right)$ are solutions to $\overrightarrow{v^{\prime}}=A \vec{v}$ where $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 1 \\ 2 & 1 & 2\end{array}\right)$.
15. Under the same notation as the previous problem. Write out the system of linear equations that $\vec{v}^{\prime}=A \vec{v}$ represents and find the general solution.
16. Still with the same notation, what are the eigenvalues and eigenvectors of $A$ ?

